Attention and Reinforcement Learning: Constructing Representations from Indirect Feedback

نویسنده

  • Fabián Cañas
چکیده

Reinforcement learning (RL) shows great promise as a theory of learning in complex, dynamic tasks. However, the learning performance of RL models depends strongly on how stimuli are represented, because this determines how knowledge is generalized among stimuli. We propose a mechanism by which RL autonomously constructs representations that suit its needs, using selective attention among stimulus dimensions to bootstrap off of internal value estimates and improve those same estimates, thereby speeding learning. Results of a behavioral experiment support this proposal, by showing people can learn selective attention for actions that do not lead directly to reward, through internally generated feedback. The results are cast in a larger framework for integrating RL with psychological mechanisms of representation learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attention-Gated Reinforcement Learning of Internal Representations for Classification

Animal learning is associated with changes in the efficacy of connections between neurons. The rules that govern this plasticity can be tested in neural networks. Rules that train neural networks to map stimuli onto outputs are given by supervised learning and reinforcement learning theories. Supervised learning is efficient but biologically implausible. In contrast, reinforcement learning is b...

متن کامل

Web pages ranking algorithm based on reinforcement learning and user feedback

The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features

Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...

متن کامل

Manifold Representations for Value-Function Approximation in Reinforcement Learning

Reinforcement learning (RL) has shown itself to be a successful paradigm for solving optimal control problems. However, that success has been mostly limited to problems with a finite set of states and actions. The problem of extending reinforcement learning techniques to the continuous state case has received quite a bit of attention in the last few years. One approach to solving reinforcement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010